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Introduction 

The burgeoning world population demands an increase in food 

supply, a challenge that has left over 850 million people 

globally suffering from chronic hunger [1]. As part of the 

solution, microbial inoculants, a sustainable technology, 

promises to enhance soil health and crop yield [2]. These 

beneficial microorganisms (Table 1), also known as 

bioinoculants or Plant Growth-Promoting Microorganisms 

(PGPM), boost nutrient absorption, pest control, pathogen 

management, and provide resilience against abiotic stress 

factors [2, 4]. 

Agricultural practices, such as monocropping, 

intercropping, and crop rotation, can substantially benefit from 

microbial inoculation. However, monoculture may promote 

intensive herbicide use, leading to weed resistance and water 

pollution, contrasting with the biodiversity fostered by 

intercropping or crop rotation [12]. The principal elements of 

agricultural soils, Nitrogen (N), Potassium (K), and 

Phosphorus (P), are supplied through organic farming and 

traditional cropping systems [6]. Compost and crop rotation 

serve similar purposes, enhancing indigenous microbial 

communities [5]. Borah et al. found that various microbial 

                                                 
This work is published open access under the Creative Commons Attribution License 4.0, which permits free reuse, remix, redistribution and transformation provided due credit is given. 

cultures significantly increased the microbial population but 

had little impact on the nutritional component of N, K, and P 

in vermicompost and farmyard manure [7]. 

Long-term crop rotation positively influences Carbon 

dioxide (CO2) emissions and earthworm populations, essential 

factors for plant growth [8]. It encourages the efficient use of 

soil nutrients, reduces pest and pathogen prevalence, enriches 

soil and plant yield, and prevents land degradation [9]. 

Intercropping, another advantageous agricultural practice, 

fosters organic matter decomposition and nitrogen-fixing [10]. 

It serves as an effective management strategy for soil-borne 

pathogens, akin to microbial inoculations [11]. Furthermore, 

soil enrichment through intercropping of grain plants has been 

observed, thereby enhancing soil microbiome and microbial 

diversity [12, 13]. Given the substantial changes microbial 

inoculations introduce to soil microbial communities [14, 15], 

careful observation and monitoring are required to maintain a 

balance of beneficial microbes and nutrient levels [10]. As we 

pursue sustainable agriculture, this balance emerges as a 

critical facet to be carefully managed.
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Table 1: Microbial Inoculants employed in agricultural practices field and experimented settings 

S/N Microbial Inoculants Plant(s) or Crop(s) Involved Associated 

Agricultural 

Practices 

References 

1 Zinc-solubilizing bacteria (Gluconacetobacter, 

Bacillus., Pseudomonas) 

Legumes and Wheat Crop Rotation and 

Intercropping 

[16] 

2 Seed inoculated Soybean 

(Bacterium Azospirillum) 

Soybean Intercropping [17] 

3 Plant growth-promoting rhizo-bacteria (PGPR) for 

legume-based 

Maize (Zea mays)/ Soybean 

(Glycine max) 

Proso millet (Panicum miliaceum 

L.) / Mung bean (Vigna radiata) 

Intercropping [18] 

 

4 Endophytic Bacteria 

(SaMR12) 

Eggplant 

(Solanum melongena L.) 

Intercropping [19] 

5 Azospirillum combined with nitrogen fertilization Sorghum Intercropping [20] 

6 Mycorrhizosphere bacteria (arbuscular 

mycorrhizal fungi (Rhizophagus irregularis) for 

Cereal-legume based 

Maize (Corn) Intercropping  

 

[21] 

7 Rhizobium-inoculated maize Maize  

(Zea mays L.)/ 

Faba bean (Vicia faba L.) 

Intercropping [22] 

 

 

8 

Urochloa brizantha and sorghum inoculated with 

Azospirillum brasilense for silage 

Sorghum seed Intercropping [23] 

9 Arbuscular mycorrhizal fungi (AMF) and plant 

growth-promoting rhizobacteria (Pseudomonas) 

Pigeon pea (Cajanus cajan) and 

finger millet (Eleusine coracana) 

Intercropping [24] 

 

Comparative Effectiveness of Microbial Inoculants on Soil 

Biotic and Abiotic Factors 

As alternatives to synthetic agricultural chemicals, microbial 

inoculants offer several benefits. They serve as renewable, 

eco-friendly nutrient sources that invigorate soil biology and 

replenish soil fertility [25, 26]. Capable of mitigating 

agricultural diseases and abiotic stressors, microbes contribute 

to numerous environmental biological and chemical processes, 

including pathogen biological control and nutrient cycling, 

consequently enhancing nutrient availability [27, 28, 29]. 

Microbial inoculants foster biodiversity, creating conducive 

conditions for beneficial microorganisms' growth and 

improving soil physical properties [30]. These improvements 

include enhancing soil particle structure and aggregation, 

reducing soil compaction, increasing pore spaces, and 

fostering water infiltration. 

In soils contaminated with toxins, xenobiotics, and 

refractory chemicals, microbial inoculation facilitates the 

biodegradation of complex substances and initiates 

bioremediation processes [30]. Microbial inoculants also 

promote resistance to diseases, proving useful for biological 

plant disease control [31], weed pest management (biological 

herbicides) [32], and insect pest control (biological 

insecticides) [33]. Their antioxidant properties boost the 

decomposition of organic matter and increase soil humus 

content, positioning them as viable alternatives to chemical 

agriculture [34]. Microbial inoculation stands as a cost-

effective solution to soil salinity stress [35]. It helps plants 

manage this stress by enhancing nutrient uptake, triggering an 

antioxidative defense mechanism, modulating plant hormone 

levels, and reducing ethylene levels by producing 1-

aminocyclopropane-1-carboxylatedeaminase in the plant's 

rhizosphere [30]. 

Abiotic stressors like salinity, drought, floods, and acidity 

constitute significant challenges in agriculture, rendering 

considerable agricultural land unproductive [36]. Microbial-

derived substances can significantly reduce these abiotic stress 

effects. For instance, long-chained Acyl homoserine lactone 

(AHL) compounds produced by Burkholderia graminis 

improve tomato growth and salt tolerance [37], while 

siderophores synthesized by Streptomyces acidiscabies E13 

mitigate metal-induced oxidative stress in cowpea plants [38]. 

However, the application of microbial inoculants can 

occasionally lead to unintended outcomes. The introduction of 

Fusarium and Rhizoctonia strains for controlling invasive 

weeds may inadvertently suppress native plant species through 

interactions with root-disrupting insects and the prevalence of 

other potentially growth-suppressive microorganisms [39]. 

Additionally, microbial invasion can affect the genetic 

diversity of indigenous resident populations through 

interactions and horizontal gene transfers (HGT) that favor 

genetic alterations [40]. 

In the face of biotic stress, biological control has been an 

effective agricultural strategy. Some substances can directly 

inhibit plant diseases [41], enhance systemic resistance [42], 

or promote soil fungistatic and suppressiveness [43]. For 

example, maize plants treated with 2,3-butanediol exhibited 

heightened resistance to Setosphaeria turcica, the fungus 

causing Northern corn leaf blight [44]. Other substances may 

improve nutrient availability for plant uptake [45] or stimulate 

the production of advantageous secondary metabolites in the 

plant [46], allowing it to flourish despite biotic stress. 

 

Farmer Accessibility and Benefits of Microbial Inoculants 

Research by Doss [47] indicates that institutional factors such 

as policy influence the availability and accessibility of inputs, 

markets, and credit facilities that support inoculant technology 

use. Llewellyn's study [48] revealed that innovations' adoption 

was hindered due to extension agents' inability to reach 

farmers promptly due to poor transportation, adverse weather 

conditions, and other technical difficulties. Further, Anang's 

questionnaire study [49] enumerated issues contributing to the 
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reduced accessibility of inoculants: their perishability, lack of 

easy access, insufficient funding for purchase, inadequate 

information, absence of refrigeration for storage, lack of 

available inoculants, and complex technical procedures. These 

observations align with Dogbe's [50] assertion that the 

inability of farmers to access funds for agricultural inputs is a 

significant hindrance to African agricultural development. 

Callaghan [51] also notes the high cost of maintaining both 

seed and microbial viability during storage. 

The use of microorganisms for soil bioremediation has 

numerous benefits, including their ability to sequester heavy 

metals, recycle nutrients, and decompose pollutants [52]. 

Arbuscular mycorrhizal fungi (AMF), a widely-used fungal 

biofertilizer, can be incorporated for this purpose [53], as their 

external hyphae contribute to plant uptake of immobile 

nutrients and alleviate heavy metal toxicity [54]. Plants 

provide microorganisms with root exudates like proteins, 

vitamins, and hormones, thereby protecting plant roots from 

direct contact with contaminants [55]. 

Commonly utilized inoculants on crops include Rhizobium, 

Azospirillum, and Bacillus [56]. Rhizobium is considered safe 

and enhances plant growth through nitrogen fixation, 

phosphate solubilization, pathogen inhibition, and stress 

resistance [57]. Azospirillum promotes plant growth by 

releasing secondary compounds like amino acids, indole acetic 

acid, cytokines, and polyamines, favoring root growth and 

improved water and nutrient absorption [58, 59]. Bacillus is 

known for its production of lipopeptides, lytic enzymes, and 

endotoxins that exert biological control against pathogens 

affecting corn, wheat, and fruit trees [60, 61, 62]. Certain 

Bacillus strains are also recognized for hormone production 

and phosphate solubilization [63]. 

In a move to mimic soil communities, newer inoculants 

contain multiple species [64], recognizing that 

microorganisms are found in communities and not in isolation. 

Co-inoculation of Plant growth-promoting rhizobacteria 

(PGPR) and arbuscular mycorrhizal fungi (AMF) is 

considered an additive strategy among biofertilizers [65]. 

 

Challenges in Utilizing Microbial Inoculants for 

Enhancing Agricultural Sustainability 

Various abiotic environmental parameters profoundly 

influence the effectiveness of microbial inoculant applications. 

These include factors such as light intensity, temperature, pH, 

soil type, and the nutrient and rare element content [66]. These 

parameters, combined with the biotic component, can impact 

not just the applied microorganisms but also the entire 

holobiont - the host (crop) plant and its associated macro- and 

microbiota, consequently affecting the overall performance of 

the applied microorganisms [67]. 

Although microbial strains selected for a specific purpose 

often show promising results in controlled greenhouse trials, 

even when non-sterile soil is used, their effectiveness can be 

unpredictable and inconsistent in the field, limiting the 

practical application of these microbial solutions [67]. This 

inconsistency calls for innovative solutions [66]. Factors such 

as physiological activity, initial cell dosage, compatibility with 

the target plant, and the recipient environment's abiotic and 

biotic characteristics may influence strain establishment. The 

prevailing conditions of the soil/plant environment, typically 

overlooked during microorganism cultivation, may affect the 

introduced strain's competitive ability and limit its 

establishment. The inoculated microorganisms must compete 

with a diverse range of existing microbiota [67]. 

The specificity of microbial inoculants presents a critical 

obstacle to their wider adoption. Unlike agrochemicals, which 

typically have broad-spectrum effects on numerous organisms, 

microbial inoculants are often highly specific [66]. For 

instance, carboline, a compound produced by Elytrigia repens, 

enhanced aphid resistance in barley [68]; however, its 

effectiveness diminished in the absence of barley. In complex 

field environments, where multiple factors operate 

concurrently, this specificity can lead to variable outcomes in 

terms of quality and efficacy [66]. 

The process of isolating, identifying, and purifying certain 

compounds is time-consuming and labor-intensive. The 

volatile nature of some compounds [69, 70] necessitates the 

use of sophisticated and potentially expensive isolation 

techniques. Abnormal levels, particularly high concentrations 

of some compounds, can inhibit rather than promote plant 

growth [71]. For example, Lo Cantore et al. [71] observed that 

DMDS at 2.5 μg inhibited broccoli and lettuce seed 

germination, while lower doses of 0.312 and 0.625 μg 

improved growth. Interestingly, the same substance produced 

by different microbes can have varying effects on plants. 

While Vaishnav et al. [72] reported improved germination of 

soybean seeds treated with 50–100 μg of 1-undecene from 

Pseudomonas simiae, Lo Cantore et al. [71] and Briard et al. 

[73] observed negative effects on the germination of broccoli 

and lettuce seeds treated with the same volatile organic 

compounds produced by Pseudomonas aeruginosa. 

 

Methodology 

This study employed Google Scholar and Scopus scientific 

databases to gather relevant data. The primary focus was on 

articles published no later than 2003 due to their relevancy to 

the topic. Nonetheless, a few older articles were also 

considered given their significance to the study. Irrelevant 

articles were excluded from consideration. Specific keywords 

related to the project title were utilized as search queries in 

these scientific databases, the resulting articles then provided 

the basis for this narrative review and enabled the construction 

of evidence-based results. 

 

Discussion and review of evidence 

As delineated in Table 2, the findings from this study suggest 

that specific microorganisms, encompassing fungi, bacteria, 

nematodes, protozoa, and actinomycetes, can be effectively 

used as microbial inoculants for the benefit of plants. These 

microorganisms, and their numerous benefits, which are 

detailed in Table 2, have been shown to have a positive 

influence on soil and plant health. Tables 3 and 4 illustrate the 

manifold advantages of microbial inoculants over synthetic 

agricultural compounds and demonstrate the effects of soil's 

abiotic and biotic parameters on the functionality of microbial 

inoculants. These insights can serve as a valuable contribution 

to the evaluation and refinement of current agricultural 

practices on a global scale. 

Just as different crops have their unique growth 

requirements, so do various microbial inoculants have specific 

prerequisites that can impact their efficiency, as represented in 

Table 4. This information can be leveraged by farmers and 

cultivators to foster sustainable agricultural practices. 
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Nonetheless, as indicated in Table 5, there are certain 

limitations associated with the use of microbial inoculants with 

specific plants. These limitations can affect either the 

availability of inoculants to plants or the accessibility of the 

inoculants to the plants. Hence, to achieve sustainable 

agriculture, it is crucial to take into account factors such as the 

type of soil, its biotic and abiotic elements, the plant species of 

interest, and the choice of microbial inoculants. 
 

Table 2: Benefits of Microorganisms 

Study Microorganisms Examples of 

microorganism 

Benefits 

[74] Fungi Arbuscular Mycorrhizal 

(AM) 

They produce iron (Fe) and other micronutrients  

[75] ,, ,, Make plants more resistant to saline conditions 

[76] ,, ,, They produce phyto-hormones that stimulates the 

plants to release chemicals that will inhibit or hinder 

the growth of pests and diseases 

[77] ,, ,, They network with other neighbouring plants 

including plants of different species by transferring 

nutrients and resistance to infestations of pests and 

diseases thereby, enhancing yields of multi-cropping 

systems 

[78] Bacteria Agrobacterium Enhance nodules and solubilize phosphorus 

[75] ,, Azotobacter  Fixes nitrogen, solubilize phosphorus and tolerance 

for drought salinity 

[78, 79, 80] 

 

,, Bacillus Fixes nitrogen 

Enhance nodules 

Enhance crop growth 

Solubilizes phosphorus 

Responsible for Potassium uptake 

Suppresses diseases  

 

[80, 81, 82] 

 

,, Rhizobium Fixes nitrogen 

Solubilizes phosphorus 

Tolerance for drought salinity 

Suppresses diseases  

[82, 83] 

 

,, Azoarcus, 

Diazotrophicus, 

Herbaspirillum and 

Serratia 

They all help in fixing nitrogen in the soil 

[84] Actinomycetes  They recycle organic matters in the environment by 

producing hydrolytic enzymes  

[85] Protozoa  Protozoa increases plant biomass independently of 

nutrient contents in plant tissue   

[86] ,,  Protozoa can stimulate bacterial production of 

secondary metabolites  

[87] Nematodes  They affect the growth and metabolic activities of 

microbes thereby regulating rates of decomposition 

[88, 89] 

 

,,  They play an important role in nitrogen cycle by 

mineralizing nitrogen to release excessive 

ammonium NH4
+ 

[88] ,,  They regulate bacteria population and community 

composition  

[90] ,,  Nematodes enhance soil quality by providing food 

sources for other organisms and consume disease 

causing organisms  

[90] ,,  They are an important resource in battling soil borne 

diseases 
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Table 3: Some advantages of Microbial Inoculants over Synthetic agricultural chemical 

S/N Comparing 

factor 

 Effect(s) Reference(s) 

1 Soil Quality Microbial 

Inoculant 

Antioxidant activities of microbes encourage the breakdown of 

organic materials and boost the soil's humus level; soil particle 

structure and aggregation are improved, compaction is 

decreased, pore spaces are increased, and water infiltration is 

increased. 

 

[91, 92] 

 

Synthetic 

agricultural 

chemical 

Long-term use of agrochemicals in agriculture may have 

harmful effects on soil processes, soil microbial activity, soil 

nutrient cycling, and crop yield. 

Numerous synthetic fertilizers contain acid radicals like HCl and 

sulfuric radicals, which raise soil acidity and negatively impact 

the health of the soil and plants. 

[93, 94]  

 

 

2 Soil 

biodiversity 

Microbial 

Inoculant 

It aids conservation or restoration of biodiversity [95, 96] 

Synthetic 

agricultural 

chemical 

The use of herbicides and synthetic fertilizers alters the 

interconnections between below-ground and above-ground 

ecosystems, disrupts internal biological cycles, and impairs pest 

management. 

[97] 

3 Aquatic 

Environments 

Microbial 

Inoculant 

Application of microbial Inoculant reduces the use of 

agrochemicals, thereby reducing waste and pollution 

[98] 

Synthetic 

agricultural 

chemical 

Natural resources, especially groundwater and water used for 

aquaculture, are compromised by the presence of chemical 

residues. 

Toxic pesticides, herbicides, and chemical fertilizers used in 

agriculture contaminate water sources. 

[99, 100, 101, 

102]  

4 Food Quality 

and safety 

Microbial 

Inoculant 

Biofertilizers, made up of active microbes, are a viable 

alternative technology to increase food production without 

jeopardizing human and environmental health. Biofertilizers 

improve the nutritious properties of fresh vegetables by 

increasing; the antioxidant activity, the total phenolic 

compounds and chlorophyll. 

[30, 103]  

 

Synthetic 

agricultural 

chemical 

Human cancer, obesity, endocrine disruption, and other 

disorders have been linked to pesticide and synthetic chemical 

exposure. 

 

[104, 105, 

106] 

 

Table 4: Effects of soil abiotic and biotic parameters on microbial inoculants 

Table 4: Effects of soil abiotic and biotic parameters on microbial inoculants (Cont’d 

S/N Soil 

parameters 

Class of 

parameter 

Study Effects on Microbial inoculants 

1 Soil Texture Abiotic [107] Inoculants survive better in fine-textured (clay) soils than in coarse 

(sandy) soils. 

2 Soil Moisture Abiotic [108] The volume of percolating water introduced to a root system 

affects the depth of bacterial colonization of the rhizosphere. 

[107] Predation would be more accessible to bacterial cells introduced 

into first moist soil than to cells introduced into initially dry soil. 

3 Nutrient 

Components 

Abiotic [107] Due to the scarcity of available nutrient sources to microbes in soil, 

the population sizes of PGPMs decrease more or less rapidly after 

introduction into natural soil. 

[109] The addition of enrichment materials can improve the performance 

of bioformulations. 

4 Osmotic 

Stress 

Abiotic  [110] Salinity has a deleterious influence on the long-term viability of 

essential microorganisms found in the rhizosphere of plants. With 

increased osmotic stress, there decrease in the synthesis of plant 

growth-promoting and biocontrol metabolites have been reported. 
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Table 4: (Cont’d) 

   

[111, 

112] 

 

Increased salinity has been shown to inhibit the survival and development 

of Rhizobium strains. 

[113] Increased salinity can result in a drop in ergosterol content, indicating that 

fungal abundance reduced. 

5 Soil Acidity and 

Alkalinity 

Abiotic [114]  Phenazine-1-carboxamide have been reported to have ten times the 

antifungal activity of phenazine-1-carboxylic acid in vitro at pH 5.7. 

(PCA). 

[115]  In vitro, the activity of 2,4-DAPG against Pythium species have been 

reported to be higher at acidic pH than at neutral to alkaline pH. 

6 Temperature Abiotic  [116] The concentration of DAPG accumulated at 18 °C in P. fluorescens CHA0 

have been reported to double up at 30 °C. 

[117] Fungal and bacterial growth rates were reported to be reduced at higher 

temperatures. 

7 Soil Amendment with 

Agrochemicals 

Abiotic [118] Compared to the control, the nitrogenase activity of S. meliloti was 

reported to decrease by 93 percent in the presence of carbendazim and 

thiram, and by 91 percent in the presence of imazethapyr. 

[119] P fertilizer can reduce the number of mycorrhizal fungi. 

8 Soil Indigenous 

Microbes 

Biotic [120] The inoculation of bacteria on maize growth can be influenced favourably 

by the promotion of native microflora. 

[121] 

 

The use of Azotobacter chroococcum and Azospirillum brasilense in 

maize can enhance the population of actinomycetes. 

 

 

Table 5: Factors influencing the availability and accessibility of microbial inoculants to plants and soil 

Study Factor  Effects 

[122] In-field 

competition  

For introduced microorganisms to persist in the following growing seasons, they need to 

benefit the soil preferentially and outcompete the microorganisms already in the field. 

[123, 

124] 

Climate change Microbial inoculants are less effective in areas with increasing temperatures, salinity, poor 

nutrient and water stressed soil. Climate changes may also decrease the available areas of 

cultivation. However, certain Plant Growth Promoting Rhizobacteria can correct these. 

[125, 

51] 

Monetary factor Inoculant’s production needs to maintain cell viability for a long period. However, high 

production cost requiring specialized equipment and skilled labor is a major challenge in the 

lyophilization processes involving the removal of intracellular water and prolonging 

microbial lifetime. The cost of maintaining the viability of both seeds and microbes in 

storage is quite alarming.  

[125, 

127, 

128,]  

 

Microbial threat The use of microbial inoculant has been reported risky, this is because some microbial 

biocontrol agents are toxic to non-targeted organisms. Some requirements are needed to be 

followed under specific conditions to prevent plant, humans and animal pathogens that are 

found as predominant microbes in products which may jeopardize high quality of beneficial 

produce.  

[128] Plant/Microbial 

compatibility 

For an inoculant to be effective, it has to be compatible with the plant populations, soil 

conditions and other existing microbial populations 

[128] Microbial 

diversity 

A particular soil may lack the plant and microbial diversity necessary to respond to an 

inoculant. Plant species has different chemicals, releases different nutrients into the soil after 

decomposition which may provide a different type of microbial habitat within its 

rhizosphere   

 

 

Conclusion and Recommendations 

Given the pressing need for environmentally-conscious 

practices that minimize adverse global effects, this study 

emphatically presents microbial inoculants as green tools 

poised to catalyze sustainable agriculture. When properly 

studied and harnessed, these bioresources offer immense 

potential in enhancing agricultural productivity while 

mitigating environmental impact. 

However, the successful implementation of these tools 

necessitates a collective approach. Governments, research 

institutions, and relevant stakeholders should align their efforts 

towards creating awareness, improving accessibility, and 

ensuring the effective delivery of microbial inoculants to 

farmers and cultivators. These efforts should be supplemented 

with continuous research and development aimed at 

overcoming the existing limitations and enhancing the efficacy 

of these inoculants. 

Furthermore, farmers should be provided with adequate 

training and resources to effectively integrate the use of 

microbial inoculants into their farming practices. This would 
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not only improve their productivity but also contribute 

significantly towards the broader goal of sustainable 

agriculture. 
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